Modelo de similaridade de texturas usando Redes Neurais Profundas

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: SOUZA, Marcus Vinícius Silva Lacerda de
Orientador(a): REN, Tsang Ing
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Ciencia da Computacao
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/35858
Resumo: Nas últimas décadas, diversas técnicas de descrição de texturas foram propostas e em combinação com métodos de classificação, são utilizadas para a tarefa de análise textural. Contudo, dada a variação das classes texturas que existem, sempre que há um novo con- junto de dados são executados diversas técnicas de descrição para saber qual é a melhor nesse conjunto de dados mais recente. Encontrar as técnicas que sejam eficientes para cada uma dessas novas bases é um trabalho exaustivo, devido ao processamento computacional alto além do tempo que é utilizado no processo. O objetivo dessa dissertação é propor uma metodologia baseada em Deep Metric Learning que gere um espaço para representar as bases de textura de acordo com suas similaridades e com isso analisar se os métodos de descrição tem um desempenho semelhante nas bases que forem consideradas simila- res. Com isso, os resultados podem ser utilizados para predizer quais técnicas funcionam melhor em uma nova base de texturas de entrada que seja desconhecida ao treinamento, também otimizando o tempo e esforço que normalmente são dedicados fazendo uma aná- lise dessa natureza. Esse espaço foi gerado aplicando uma rede profunda com uma função de perda Triplet Loss em bases de textura comumente utilizadas na literatura, onde já se sabe quais descritores funcionam melhor em cada uma. Como resultado, o espaço aglo- merou bases semelhantes e, ao introduzirmos uma base de dados desconhecida essa base foi classificada com uma região do espaço onde ela possui maior similaridade. A análise revelou que as bases semelhantes realmente possuem uma quantidade alta de descrito- res de textura que são as técnicas de melhor desempenho. Os resultados mostram que a rede profunda possui um bom comportamento quando é utilizada dentro do modelo de similaridade de texturas mostrando que pode agrupar bases como regiões texturais.