Aprendizagem profunda aplicada a estimação monocular de profundidade: uma abordagem baseada em atenção e complementação

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Mendes, Raul de Queiroz
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/18/18153/tde-02092021-110320/
Resumo: Medir a profundidade de imagens é um problema inverso fundamental dentro do campo da Visão Computacional, uma vez que as informações de profundidade são obtidas por meio de imagens 2D, as quais podem ser geradas a partir de infinitas possibilidades de cenas reais observadas. Ademais, tal problema é não bem-posto, pois os valores estimados de profundidade são fortemente dependentes das imagens de espaços do mundo real adquiridas. Outras importantes tarefas da área de Robótica recorrem a medidas de profundidade, como a Localização e Mapeamento Simultâneos (SLAM) e Structure from Motion (SfM). Beneficiando-se do progresso de Redes Neurais Convolucionais Profundas (DCNNs) para explorar características estruturais e informações espaciais de imagens, a Estimação de Profundidade a partir de Uma Única Imagem (SIDE) é frequentemente destacada em meios de inovação científica e tecnológica, já que este conceito proporciona vantagens relacionadas ao seu baixo custo de implementação, menores restrições de uso e robustez a condições ambientais. No contexto de veículos autônomos, as DCNNs otimizam a tarefa de SIDE através da predição de mapas com dados precisos de profundidade, os quais são indispensáveis durante o processo de navegação autônoma em locais distintos. No entanto, essas redes geralmente são treinadas em mapas de profundidade esparsos e ruidosos, gerados por varreduras de Light Detection and Ranging laser (LiDAR) ou structured-light e time-of-flight devices (Kinect), e são executadas com alto custo computacional, exigindo Unidades de Processamento Gráfico (GPUs) de alto desempenho. Sendo assim, este trabalho propõe uma nova arquitetura de DCNN supervisionada e funções de custo baseadas em atenção para solucionar problemas de SIDE. Inova-se também ao incorporar múltiplas técnicas de Visão Computacional, como a utilização de algoritmos de densificação e informações adicionais de semântica, de profundidade e de normais de superfície ao treinamento de tal DCNN. O método introduzido neste trabalho tem foco em aplicações de veículos autônomos em ambientes internos e externos.