Modelos de compressão de dados para classificação e segmentação de texturas

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Honório, Tatiane Cruz de Souza
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraí­ba
BR
Informática
Programa de Pós-Graduação em Informática
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/tede/6044
Resumo: This work analyzes methods for textures images classification and segmentation using lossless data compression algorithms models. Two data compression algorithms are evaluated: the Prediction by Partial Matching (PPM) and the Lempel-Ziv-Welch (LZW) that had been applied in textures classification in previous works. The textures are pre-processed using histogram equalization. The classification method is divided into two stages. In the learning stage or training, the compression algorithm builds statistical models for the horizontal and the vertical structures of each class. In the classification stage, samples of textures to be classified are compressed using models built in the learning stage, sweeping the samples horizontally and vertically. A sample is assigned to the class that obtains the highest average compression. The classifier tests were made using the Brodatz textures album. The classifiers were tested for various contexts sizes (in the PPM case), samples number and training sets. For some combinations of these parameters, the classifiers achieved 100% of correct classifications. Texture segmentation process was made only with the PPM. Initially, the horizontal models are created using eight textures samples of size 32 x 32 pixels for each class, with the PPM context of a maximum size 1. The images to be segmented are compressed by the models of classes, initially in blocks of size 64 x 64 pixels. If none of the models achieve a compression ratio at a predetermined interval, the block is divided into four blocks of size 32 x 32. The process is repeated until a model reach a compression ratio in the range of the compression ratios set for the size of the block in question. If the block get the 4 x 4 size it is classified as belonging to the class of the model that reached the highest compression ratio.