Método para segmentação de pele humana em imagens faciais baseado em informações de cor e textura

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Casati, João Paulo Brognoni
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18152/tde-30012014-152011/
Resumo: A segmentação de pele em imagens é um importante processo para uma vasta gama de aplicações, como detecção e rastreamento de faces, reconhecimento de gestos, computação forense, entre outros. Um dos maiores problemas encontrados neste tipo de aplicação é a presença de objetos que possuem cor de pele nas imagens, mas não fazem parte de segmentos reais de pele, sendo muitas vezes erroneamente classificados como pele. A fim de reduzir a frequência destes falsos positivos, é apresentado neste trabalho um método de segmentação de pele humana em imagens faciais que possui duas diferentes etapas que reduzem a quantidade de falsos positivos do processo sem que se percam quantidades significantes de verdadeiros positivos. Estas duas etapas são chamadas de FPAR (False Positive Area Reduction) e aplicação de textura. A primeira visa remover segmentos não contínuos classificados como pele e a segunda aborda a aplicação de textura nas imagens, removendo áreas em que a textura não se assemelha à textura de pele humana. Para isto, foi desenvolvido o banco de imagens SFA (Skin of FERET and AR), constituído de imagens originais dos bancos de faces FERET e AR, seus respectivos ground truths de segmentação de pele e amostras de pele e não pele extraídas das imagens originais. O método apresentado neste trabalho apresenta resultados promissores atingindo até 46,9% de redução de falsos positivos sem que a acurácia aferida tenha redução significante (apenas 1,8%). Este trabalho tem como contribuições o método desenvolvido e o banco de imagens SFA que fica disponível online para download pela comunidade científica.