Modelos baseados em PPM para previsão de trajetórias utilizando informações contextuais.
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/574 |
Resumo: | Com a ampla difusão de smartphones equipados com dispositivos GPS (Global Positioning System), rastrear a localização de objetos (como pessoas e veículos) tem sido uma tarefa mais factível, resultando em novas oportunidades de pesquisas em variadas áreas do conhecimento. Dentre estas oportunidades, esta pesquisa lida com o desafio da área de previsão de rotas e destinos. Saber antecipadamente o destino de um usuário assim que ele inicia um deslocamento tem muitas utilidades práticas, tais como: indicar rotas menos congestionadas ou vias mais seguras, e sugerir a visita a algum ponto de interesse (POI) antes do destino almejado. Sistemas que fornecem previsão de rota e destino estão disponíveis comercialmente, no entanto, estes podem requerer interações constantes do usuário. Para deslocamentos diários, porém, a necessidade de uma interação frequente do usuário com um aplicativo pode tornar seu uso pouco prático e pouco ubíquo. Além disso, muitos trabalhos que apresentam modelos de previsão de rotas e destinos, disponíveis na literatura, não contemplam uma importante informação contextual, que é o papel que os lugares visitados representam para um usuário (por exemplo, se é sua casa ou seu local de trabalho). Não obstante, a maioria dos preditores disponíveis não possuem a funcionalidade de prever lugares nunca visitados. Esta tese de doutorado propõe uma família de métodos de predição baseada no algoritmo de compressão de dados Prediction by Partial Matching (PPM). Ainda com relação a esta pesquisa, é proposto um mecanismo capaz de identificar que uma rota em curso está sendo realizada pela primeira vez e, portanto, ter a possibilidade de prever um destino ainda não visitado. Neste estudo, também foram implementados outros preditores consolidados na literatura, que são as Cadeias de Markov e as Cadeias Ocultas de Markov, utilizados para comparação. É importante observar que ambos os preditores são capazes de prever apenas o destino de um trajeto, ao invés da rota restante. Nos experimentos realizados, foram utilizadas as métricas de Precisão, Recall e Medida-F (F1 Score), com validação cruzada (contendo 10 partições mutuamente exclusivas), para avaliação dos modelos de previsão implementados. A base de dados utilizada nesta pesquisa é composta por mais de 1.500 rotas, coletadas por aproximadamente três meses, referentes a 21 usuários. Os preditores baseados em PPM apresentaram resultados competitivos (ou superiores) comparados aos da literatura. |