Fases Geométricas e suas relações com a Teoria de Fibrados e Representação de Grupos.
Ano de defesa: | 2008 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal da Paraíba
BR Matemática Programa de Pós-Graduação em Matemática UFPB |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpb.br/jspui/handle/tede/7394 |
Resumo: | We present the own mathematic formalism to, first of all, study the holonomy interpretations of the adiabatic geometric phase presented by Berry-Simon and Aharanov-Anadan and, after this, the similirities found with the theory of representation groups, particularly, with the Borel-Weil-Bott theorem. These relations are made through classification of complex bundle line, and these results are used to introduce a cranked Hamiltonian. In general, we also show that the parameter space is a flag manifold or a submanifold of her and present a topologic argument of this space that indicates the relation between the structure Riemannian and the Berry s connection. |