Fases geométricas para quasipartículas em grafeno na presença de deslocações
Ano de defesa: | 2013 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal da Paraíba
Brasil Física Programa de Pós-Graduação em Física UFPB |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpb.br/jspui/handle/tede/9556 |
Resumo: | Recently, Mesaros, Sadri and Zaanen investigated the rise of Berry phases in the dynamics of quasiparticle in graphene with edge dislocation. In opposition with disclinations, dislocations require only finites energies to be created so that is virtually impossible to prepare one crystal, which doesn't have dislocations. Mesaros, Sadri e Zaanen used the theory of classic elasticity, to introduce informations due deslocations, in the Hamiltonian of particle and also used tigth-binding method to describe the system. They obtained that dynamics particle acquires one Berry phase and which this phase can be used at applications in quantic computation. In this work, we use the Katanev and Volovich geometric theory of defects to introduce dislocations in the graphene's sheet. We obtain the metric which descibe edge dislocations. We obtain the Hamiltonian which descibe the dynamic of quasiparticle in the graphene at curved space-time with torsion. Write the Dirac equation to this system and investigate the rise of Berry phase in this system. We show that Berry phase obtained to our system depends of intensity of Burgers vector. |