Existência e multiplicidade de soluções para uma classe de problemas quaselineares envolvendo expoentes variáveis

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Barreiro, José Lindomberg Possiano
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraí­ba
BR
Matemática
Programa Associado de Pós-Graduação em Matemática
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/tede/7423
Resumo: In this work, we will use the Mountain Pass Theorem for an even Functional, Genus Theory, Ekeland's variational principle and some properties involving Nehari manifolds to obtain existence and multiplicity of solutions for the following class of quasilinear problems involving variable exponents 8<: p(x)u + jujp(x)2u = f(x; u); x 2 u 2 W1;p(x) 0 ( ) n f0g where is a bounded domain in RN, not necessarily bounded, p(x) is the p(x)-Laplacian operator given by p(x)u = divjrujp(x)2ru; p: ! R and f : R ! R are continuous functions satisfying certain conditions, which will specified be later on.