Um novo método para transferência de modelos de calibração NIR e uma nova estratégia para classificação de sementes de algodão usando imagem hiperespectral NIR

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Soares, Sófacles Figueredo Carreiro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Química
Programa de Pós-Graduação em Química
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/tede/9237
Resumo: This work involves the development of two studies that are presented in chapters 2 and 3. At first, a new method to perform the calibration transfer was designed. This method was developed to make use of separate variables instead of using the full spectrum or spectral windows. To accomplish this task a univariate procedure is initially used to correct the spectra recorded in the secondary equipment, given a set of transfer samples. A robust regression technique is then used to obtain a model with small sensitivity with respect to the univariate correction. The proposed method is employed in two case studies involving near infrared spectrometric determination of specific mass, research octane number and naphtenes in gasoline, and moisture and oil in corn. In both cases, better calibration transfer results were obtained in comparison with piecewise direct standardization (PDS). In the second, a new strategy for cotton seed classification using near infrared (NIR) hyperspectral images (HSI) was developed. Initially the cotton seeds samples were recorded on a station HSI image-NIR and a conventional spectrometer NIR. Thereon, the images were segmented and the mean spectrum of each seed was extract. Classification models SPA-LDA e PLS-DA based on the mean spectral were developed for two data sets. The results for models SPA-LDA and PLSDA showed that the classification with HSI-NIR data set has been achieved with greater accuracy when compared to models for the NIR-conventional data set.