Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Folha, Thaisa Oliveira |
Orientador(a): |
Paim, Ana Paula Silveira |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/12455
|
Resumo: |
A espectroscopia no infravermelho próximo associada à quimiometria tem sido empregada para a análise de diferentes amostras. Este trabalho teve como principal objetivo o desenvolvimento de metodologias analíticas multivariadas orientadas a análise de farinhas de mandioca de diferentes regiões do Brasil utilizando-se da espectroscopia de infravermelho próximo (NIR). Os parâmetros de qualidade: cinzas, umidade, e pH foram determinados pelos métodos físico-químicos da AOAC (1995) e do Instituto Adolf Lutz (1985). Os espectros no infravermelho próximo foram adquiridos na faixa de 10000 a 4000 cm-1. Os modelos de calibração foram desenvolvidos utilizando setenta e duas amostras de farinha correlacionando os dados físico-químicos com os espectros NIR por Regressão por Mínimos Quadrados Parciais - PLS, Regressão por Mínimos Quadrados Parciais com coeficientes de regressão selecionados pelo algoritmo Jack-Knife - PLS/JK e Regressão Linear Múltipla com seleção de variáveis pelo Algoritmo das Projeções Sucessivas - MLR/SPA. A capacidade preditiva dos modelos foi avaliada por validação externa, utilizando um conjunto de trinta e cinco amostras que não fizeram parte da modelagem. Os modelos foram testados utilizando diferentes pré-processamentos. A análise de componentes principais (PCA) não permitiu a discriminação das amostras de farinha em função do estado de origem. Quanto aos modelos de calibração e validação, para determinação do teor de umidade, o melhor modelo foi obtido utilizando a correção multiplicativa de sinal (MSC), com RMSEP igual a 0,39%. Para a determinação do pH, o melhor modelo foi obtido empregando a primeira derivada com filtro de Savitzky Golay com janela de 21 pontos, com RMSEP igual a 0,29 . Para a determinação do teor de cinzas, o melhor modelo empregou o MSC, com RMSEP igual 0,11%. As vantagens do emprego dessa técnica são a simplicidade, a rapidez e a ausência de resíduos químicos, os quais são geralmente gerados pelos métodos tradicionais de análises. |