Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
ROCHA, Francisco Edson Lopes da
 |
Orientador(a): |
FAVERO, Eloi Luiz
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Pará
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica
|
Departamento: |
Instituto de Tecnologia
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.ufpa.br/jspui/handle/2011/7176
|
Resumo: |
Nas últimas duas décadas, o crescimento nas áreas de Redes de Computadores e Inteligência Artificial - IA - favoreceu o avanço da pesquisa em outras áreas de conhecimento, entre elas a Educação. Nesta área, novas descobertas deslocaram as pesquisas das antigas teorias educacionais comportamentalistas para o construtivismo, levando a um melhor entendimento de como acontece a aprendizagem. Aprendizagem Significativa - AS - é uma das teorias construtivista em grande evidência atualmente e Mapa Conceitual - MC - é a sua ferramenta cognitiva principal. Adicionalmente, o amadurecimento da pesquisa da modalidade de Educação a Distância - EAD - permitiu aplicar o processo educacional em larga escala. Nesta tese investiga-se a avaliação automática inteligente da aprendizagem mediada por mapas conceituais. Trata-se de uma abordagem qualitativa, denominada de avaliação formativa, que está em conformidade com o modelo de Bloom, uma referência para os processos educacionais - ensino, aprendizagem e avaliação da aprendizagem. A proposta apresentada pretende ser uma alternativa de solução para uma importante questão na área da Educação: Como avaliar qualitativamente a aprendizagem respeitando os processos cognitivos idiossincráticos de cada estudante? A integração de mapas conceituais, ontologias de domínio e algoritmos genéticos possibilita um avanço no estado da arte de avaliação e acompanhamento automático da aprendizagem. Quebra-se o paradigma das avaliações apenas quantitativas, apresentando uma nova abordagem de acompanhamento gradual e contínuo das atividades do estudante. Nesta abordagem pode-se fazer o acompanhamento individual, respeitando a forma idiossincrática de aprender, e/ou de grupo de estudantes, sendo possível agrupá-los por características cognitivas específicas ou por grau de desenvolvimento. Esta tese inicia uma nova linha de pesquisa que pode ser sintetizada como “Avaliação automática qualitativa da aprendizagem centrada em Mapas Conceituais, fundamentada com técnicas de IA: ontologias e algoritmos genéticos”. Dentro dessa nova linha de pesquisa, a tese traz as seguintes contribuições: ² um protótipo de um ambiente para ensino, aprendizagem e avaliação da aprendizagem, fundamentado na Aprendizagem Significativa, incluindo um editor de mapas conceituais, um editor de ontologias e um módulo avaliador; ² uma proposta de uso de algoritmos genéticos e ontologias para avaliação/acompanhamento qualitativo da aprendizagem, permitindo: – acompanhamento individual passo a passo; – acompanhamento de grupos de estudantes; – comparações entre estudantes. As ontologias de domínio são geradas pelo professor usando um editor de ontologias que é disponibilizado no ambiente. Elas contêm o conhecimento estrutural que deve ser aprendido pelos estudantes antes que estes possam dominar outras formas de conhecimento. O algoritmo genético foi projetado para funcionar em dois modos distintos: i) gerando múltiplos MCs para comparar com o MC do estudante, permitindo uma avaliação da aprendizagem em qualquer estágio do andamento do curso; esta avaliação é relativa, centrada num determinado número de conceitos que representa uma estrutura parcial do domínio de conhecimento sendo estudado; e ii) gerando um MC ótimo de acordo com a ontologia gerada pelo professor para permitir uma avaliação completa da aprendizagem do domínio de conhecimento que foi estudado. O modelo proposto foi avaliado pela implementação de protótipos para a ferrramenta de avaliação. O algoritmo genético desenvolvido usa como espaço de busca as ontologias. Ele imita os processos cognitivos característicos da aprendizagem significativa e constrói MCs que possam ser comparados semanticamente com o do estudante. Sua função de adaptação representa uma forma medir distâncias no campo cognitivo, sendo a escala de medida dada por uma taxonomia que organiza dimensões semânticas e, dentro destas, frases de ligação. Esta taxonomia é usada pelo professor ao construir as ontologias e pelos estudantes ao construírem seus mapas conceituais. Os principais desafios que envolveram o desenvolvimento da pesquisa relatada nesta tese foram os seguintes: 1) determinação de um modelo adequado de ontologia de domínio que pudesse ser aplicado à avaliação da aprendizagem; 2) determinação de um método e uma escala de medida que se aplicasse ao domínio cognitivo; e 3) determinação de um mecanismo de busca na ontologia que fosse coerente com as teorias construtivistas da avaliação da aprendizagem. A pesquisa relatada neste trabalho pode avançar em função de novas funcionalidades ou de melhorias nas funcionalidades já implementadas. Algumas possibilidades foram sugeridas ao final da tese, sendo uma das principais a disponibilização do ambiente na Internet. Esta tese gerou 7 (sete) contribuições científicas, 1 (uma) em revista qualis A, 1 (uma) em revista qualis B, 2 (duas) em congressos internacionais e 3 (três) em congressos nacionais. Os resultados obtidos fazem avançar significativamente o que já foi conseguido até então no grupo de pesquisa AmAm/UFPA, em cujo contexto esta tese está inserida. |