Estimativa de parâmetros aplicados em modelos epidemiológicos

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: PINTO, Thiago Moreira lattes
Orientador(a): ESTUMANO, Diego Cardoso lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Pará
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia de Processos
Departamento: Instituto de Tecnologia
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufpa.br:8080/jspui/handle/2011/15102
Resumo: Neste estudo foi selecionada a técnica bayesiana de Monte Carlo via Cadeia de Markov (MCMC) para estimativa dos parâmetros das equações diferenciais dos modelos compartimentais SQUIDER1 e SEIR2 , buscando refletir a propagação da Covid-19 no estado do Pará. Foi elaborado um algoritmo em Matlab reproduzindo a técnica de MCMC que utiliza processos estocásticos e simula um passeio aleatório, onde temos os possíveis valores do parâmetro amostrados aleatoriamente. Ao fazer uma amostragem proporcional à probabilidade dos valores, alcançou-se uma distribuição de probabilidade que se aproximou dos dados para conseguir ajustar os parâmetros do modelo e convergiu para a distribuição estacionária de interesse. Os parâmetros estimados neste trabalho para os modelos SQUIDER e SEIR foram comparados aos dados reais e aplicadas as métricas de Akaike Information Criterion (AIC) corrigido e Bayesian Information Criteria (BIC) para melhor definir o modelo que melhor representa o fenômeno de propagação da Covid-19 no estado do Pará. Como resultados foram obtidos histogramas que indicam uma convergência de parâmetros no modelo SQUIDER, o que não aconteceu com o modelo SEIR. Pela aplicação do AIC e BIC foi demonstrado que o modelo SQUIDER é o modelo que melhor representeou a propagação da Covid-19 no estado do Pará e possui um potencial de ser utilizado como modelo preditivo.