Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
FIEL, José de Santana
|
Orientador(a): |
PEREIRA JÚNIOR, Antonio
|
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Pará
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica
|
Departamento: |
Instituto de Tecnologia
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.ufpa.br:8080/jspui/handle/2011/12290
|
Resumo: |
Milhões de brasileiros são afetados pela epilepsia e o acesso ao diagnóstico precoce é crucial para o seu tratamento adequado. No entanto, o diagnóstico de epilepsia depende da avaliação de registros eletroencefalográficos (EEG) de longa duração realizados por profissionais treinados, transformando-o em um processo oneroso que não está imediatamente disponível para muitos pacientes no Brasil. Assim, o presente trabalho propõe uma metodologia para a classificação automática do EEG de indivíduos epiléticos, que utiliza registros de EEG de curta duração obtidos com o paciente em repouso. O sistema é baseado em algoritmos de aprendizado de máquina que usam um atributo extraído da densidade espectral de potência dos sinais de EEG. Esse atributo é uma estimativa da conectividade funcional entre os pares de canais de EEG e é chamado debiased weighted phase-lag index (dWPLI). Os algoritmos de classificação foram análise discriminante linear (LDA) e máquinas de vetores de suporte (SVM). Os sinais de EEG foram adquiridos durante o estado interictal, isto é, entre convulsões e não tinham atividade epileptiforme. Registros EEG 11 pacientes epiléticos e 7 indivíduos saudáveis foram utilizados para avaliar o desempenho do método proposto. Ambos os algoritmos atingiram seu desempenho máximo de classificação, 100 % de precisão e área sob a curva de característica de operação do receptor (AUROC), quando um vetor de característica com 190 atributos foi usado como entrada. Os resultados mostram a eficácia do sistema proposto, dado seu alto desempenho de classificação. |