Vieses e lacunas no (des)conhecimento espacial dos primatas da Mata Atlântica

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Silva, Nicolas Bosco da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Mato Grosso
Brasil
Instituto de Biociências (IB)
UFMT CUC - Cuiabá
Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://ri.ufmt.br/handle/1/5920
Resumo: The human-induced effects on biodiversity losses are clear across the world. In the Neotropics, the main conservation issue is how human-induced deforestation affects biodiversity at different levels of landscape fragmentation on a wide spatial scale. To answer this question, we need biodiversity data that demonstrate large-scale sampling of biodiversity in an equitable way. However, the availability of large-scale biodiversity data is still limited and space-time biased, especially in biodiverse regions such as the Neotropics. Here, (1) we make the first assessment of biases and sample coverage gaps in the data at multispatial scales. With this proposal, we question how these gaps and biases might (2) affect our predictive ability to assess the functional relationship between deforestation and biodiversity trends for a highly dynamic biome subject to deforestation, such as the Atlantic Forest. For this, we used an extensive primate sampling database for the Atlantic Forest with data from individual occurrences and in community sampling, to assess sampling biases at different spatial scales and biases and gaps in primate sampling coverage in different climatic environments. and landscaped. From this context, we divided this dissertation into two segments: the 1° chapter aims to highlight the biases and sample gaps in terms of the scale and spatial resolution studied; the 2° chapter has the prerogative that primate sampling data have gaps and biases and if used to answer macroecological questions will result in incomplete inferences. Finally, we hope to show that generating inferences for spatially broad (macroecological) issues, with biased data, can be detrimental to large-scale conservation decision making.