Detecção de fraude ou erro de medição em grandes consumidores de energia elétrica utilizando Rough Sets baseado em dados históricos e em dados em tempo real

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: Patricio, Cristian Mara Mazzini Medeiros
Orientador(a): Pinto, João Onofre Pereira
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufms.br/handle/123456789/628
Resumo: O objetivo geral deste trabalho é apresentar uma metodologia que define perfis de comportamentos diários de unidades consumidoras de energia elétrica ligadas em alta tensão, com a finalidade de detectar fraudes ou erros de medição. A partir desta metodologia construiu-se um sistema baseado em regras, utilizando informações estáticas dos consumidores, ou seja, informações que não variam no tempo e, dados dinamicos obtidos em tempo real. O desenvolvimento deste sistema seguiu os principios gerais de descoberta do conhecimento a partir de bancos de dados, utilizando na mineração das informações a teoria de Rough Sets para seleção de atributos relevantes e geração de regras. Classificou-se o comportamento das unidades, através dos perfis diários ou semanais, em normais e anormais. Os clientes classificados como anormais são selecionados para inspeção técnica. Os resultados são considerados satisfatórios, uma vez que a taxa de acerto na identificação de fraude obtida pelo sistema, utilizando-se análise semanal na unidade consumidora, a partir da pré-seleção dos consumidores com suspeita de fraude foi de 64,70%. Pode-se considerar, portanto, que a metodologia desenvolvida mostrou-se capaz de ajudar a solucionar problemas das perdas comerciais relacionadas à fraude ou erro de medição das concessionárias de energia elétrica.