Detalhes bibliográficos
Ano de defesa: |
2005 |
Autor(a) principal: |
Cabral Junior, José Edison |
Orientador(a): |
Pinto, João Onofre Pereira |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufms.br/handle/123456789/647
|
Resumo: |
As fraudes representam as maiores perdas comerciais das empresas de distribuição de energia elétrica. Devido ao elevado número de consumidores, as inspeções geralmente são feitas sem uma pré-análise de comportamento dos inspecionados, resultando em baixas taxas de acerto. Como as empresas de distribuição possuem muitas informações sobre seus consumidores armazenadas em bancos de dados, é possível identificar o perfil dos clientes fraudadores e utilizar este conhecimento na orientação das futuras inspeções. Este trabalho propõe uma metodologia baseada em Rough Sets e KDD para detecção de fraudes em consumidores de energia elétrica. Esta metodologia realiza uma avaliação detalhada da região de fronteira entre clientes normais e fraudadores, identificando padrões de comportamento fraudulentos nos dados históricos das empresas de energia elétrica. A partir destes padrões, derivam-se regras de classificação que, em futuros processos de inspeção, indicarão quais clientes apresentam perfis fraudulentos. Com inspeções guiadas por comportamentos suspeitos, aumentase a taxa de acerto e a quantidade de fraudes detectadas, diminuindo as perdas com fraudes nas empresas de distribuição de energia elétrica. |