Alterações idade-dependente nas vias metabólicas de folículos dentários: um estudo piloto

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Victor Coutinho Bastos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
FAO - DEPARTAMENTO DE CLÍNICA
Programa de Pós-Graduação em Odontologia
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/44745
https://orcid.org/0000-0003-0360-4179
Resumo: Aging is not a matter of choice; it is our fate. The 'time-dependent functional decline that affects most living organisms' is coupled with several alterations in cellular processes, including cell senescence, epigenetic alterations, genomic instability, stem cell exhaustion, amongst others. Age-related morphological changes in dental follicles have been investigated for decades, mainly motivated by the fact that cysts and tumors may arise in association with a unerupted and/or impacted teeth. The more we understand dental follicles’ physiology, the more we become able to contextualize biological events that can be associated with the occurrence of odontogenic lesions which incidence increases with age. Thus, our objective was to assess age-related changes in metabolic pathways of dental follicles associated with unerupted/impacted mandibular third molars from young and adult individuals. For this purpose, a convenience sample of formalin-fixed paraffin-embedded dental follicles from young (<16 y.o., n = 13) and adult (>26 y.o., n = 7) individuals was selected. Samples were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS)-based untargeted metabolomics. Multivariate and univariate analyses were conducted, and the prediction of altered pathways was performed by mummichog and GSEA approaches. Dental follicles from young and older individuals showed differences in pathways related to C21-steroid hormone biosynthesis, bile acid biosynthesis, galactose metabolism, androgen and estrogen biosynthesis, starch and sucrose metabolism and lipoate metabolism. Our findings support that similar to other human tissues, dental follicles associated with unerupted tooth show alterations at a metabolic level with aging, which can pave the way for further studies on oral pathology, oral biology and physiology