Raízes de equações convexas em Rn

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: Bianca Costa Guimaraes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/SLBS-643HTG
Resumo: Neste trabalho é apresentado um método numérico para refinar raízes de equações de problemas convexos com dimensões superiores a um, que é obtido através da generalização do método de Newton. Para tanto, o método utiliza uma função convexa escrita como a diferença de duas funções, uma côncava e outra convexa, e seus respectivos hiperplanos de suporte. Geometricamente, cada iteração pode ser interpretada como o ponto de interseção dos hiperplanos de suporte. São apresentados alguns exemplos numéricos existentes na literatura e outros propostos por nós. Comparamos o nosso método com o método de Newton-Raphson para problemas diferenciáveis multidimensionais. Expandimos os testes para a classe de problemas não necessariamente diferenciáveis, onde o método de Newton-Raphson não pode ser aplicado dada a ausência de informações de segunda ordem. Optou-se por construir esses problemas a partir da literatura de programação convexa não suave. Problemas de encontrar o zero de funções convexas não suave foram testados substituindo o conceito de gradiente pelo conceito de subgradiente