Convexidades de caminhos e convexidades geométricas

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Araújo, Rafael Teixeira de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/18553
Resumo: In this dissertation we present complexity results related to the hull number and the convexity number for P3 convexity. We show that the hull number and the convexity number are NP-hard even for bipartite graphs. Inspired by our research in convexity based on paths, we introduce a new convexity, where we defined as convexity of induced paths of order three or P∗ 3 . We show a relation between the geodetic convexity and the P∗ 3 convexity when the graph is a join of a Km with a non-complete graph. We did research in geometric convexity and from that we characterized graph classes under some convexities such as the star florest in P3 convexity, chordal cographs in P∗ 3 convexity, and the florests in TP convexity. We also demonstrated convexities that are geometric only in specific graph classes such as cographs in P4+-free convexity, F free graphs in F-free convexity and others. Finally, we demonstrated some results of geodesic convexity and P∗ 3 in graphs with few P4’s.