Dinâmica genérica de bilhares ovais em superfícies de curvatura constante: estendendo alguns resultados do plano
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Minas Gerais
Brasil ICX - DEPARTAMENTO DE MATEMÁTICA Programa de Pós-Graduação em Matemática UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/62169 |
Resumo: | We use the C2 topology to investigate generic proprieties for oval billiards on the plane, sphere and hyperbolic plane. Together with the work by dos Santos and Pinto de Carvalho (2017) , we extend the results of Dias Carneiro et al.(2007) about plane oval billiards to oval billiards on the sphere and the hyperbolic plane. We are going to show that, under certain generic conditions, oval billiards on these surfaces have only a finite number of periodic orbits, for each period N, all nondegenerate. Moreover, the stable and unstable manifolds of two hyperbolic points either do not intersect or have at least one transversal intersection. We also show that any oval billiard with a 2-periodic elliptic orbit can be approximated by a billiard with elliptic islands, by calculating the First Birkhoff Coefficient. |