Estudo de aplicação de técnicas de aprendizado por reforço no problema de otimização de portfólio

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Victor Marcius Magalhães Pinto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICA
Programa de Pós-Graduação em Engenharia Elétrica
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/49786
https://orcid.org/0000-0002-7340-0692
Resumo: The portfolio management problem, focus of this work, consists of determining the optimal asset allocation within a wallet, in order to maximize (or minimize) one or more objectives. These objectives are usually related to risk and return metrics. In financial economics literature, this problem has been solved using portfolio optimization models, such as Markowitz, CAPM and Black Litterman, which are executed for each instant when portfolio rebalancing is necessary. This decision process, incremental and under uncertainty, can be seen as a Markovian decision process, which makes modeling under reinforcement learning paradigm attractive, this being a recent trend discussed in machine learning literature. This work aims to investigate the use of reinforcement learning technics in portfolio optimization problem. A literature review is realized, with its main learnings. In a case study, a portfolio asset weight control problem is modeled as a Markovian decision process, and reinforcement learning algorithms are used to optimize it. The implementations are made in an incremental way, aiming to demonstrate the logic behind these algorithms developments. Finally, the model’s behavior is compared with Markowitz based strategies, and the result shows that these approaches hold good performances, and have a promising use for this kind of problem.