Uso de informações específicas de domínio em recomendações para turismo

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Ruhan Bidart
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/ESBF-A2FNBM
Resumo: E-Tourism recommendation is the task of personalizing suggestion of destinations, points-of-interest and/or traveling routes to help tourists plan their trips. In this domain, most recommender systems rely on collaborative filtering information, and ignore side information associated with the items, such as text descriptions and distances between destinations. This dissertation aims at exploiting domain-specific side information in the context of destination recommender systems. Towards that goal, we propose a family of methods that takes into account domain-specific side information to recommend destinations (i.e., cities) to the user. More specifically, we consider two types of side information, namely textual reviews of attractions located in the target destination and geographic location. Experiments on a real-world dataset show that our best method greatly outperforms a number of relevant baselines with gains (in average precision) surpassing 10% in the top-10 recommendations.