Recomendação no domínio de TV digital: uma arquitetura baseada na análise de descritivos textuais.

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: RAMOS, Felipe Barbosa Araújo.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1305
Resumo: Os Sistemas de Recomendação vêm sendo utilizados em diversos domínios de aplicação, mais recentemente, no domínio de TV (TV Digital, Smart TV, etc). Várias abordagens podem ser utilizadas para recomendar itens ou tags, baseadas principalmente no feedback dos usuários. Porém, no domínio de TV Digital a obtenção de feedback explícito é feita usualmente por meio do controle remoto, que deve ser evitado para maximizar a experiência do usuário ao ver TV. Além disso, como no contexto de Smart TV vários tipos de itens podem ser recomendados (filmes, músicas, livros, etc) a recomendação deve ser genérica o suficiente para se adequar a diferentes conteúdos. Portanto, para contornar o problema de obtenção de feedback e gerar recomendações que possam ser usadas por diferentes aplicações de Smart TV, neste trabalho é proposta uma arquitetura de recomendação baseada na extração e classificação de termos por meio da análise de descritivos textuais de programas de TV presentes nos guias de programação. A fim de validar a solução proposta, um protótipo usando um conjunto de dados real foi desenvolvido, mostrando que a partir dos termos recomendados é possível gerar recomendações finais para diferentes aplicações de Smart TV.