Efficient exploration and exploitation for eequential music recommendation
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Minas Gerais
Brasil ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO Programa de Pós-Graduação em Ciência da Computação UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/38955 |
Resumo: | Os serviços de streaming de música dependem fortemente de sistemas de recomendação para adquirir, envolver e reter usuários. Um componente notável desses serviços são as listas de reprodução, que podem ser geradas dinamicamente de maneira sequencial com base no feedback do usuário durante uma sessão de escuta. Recentemente, métodos baseados em aprendizagem online para ranqueamento se mostraram eficazes ao aproveitar esse feedback para aprender as preferências dos usuários no espaço de representação vetorial de músicas. No entanto, essas abordagens podem sofrer de convergência lenta como resultado de seu componente de exploração aleatório e ficar presas em mínimos locais devido ao seu componente de explotação agnóstico à sessão. Para superar essas limitações, propomos um novo método de aprendizagem online para ranqueamento que explora com eficiência o espaço de modelos de recomendação candidatos, restringindo-se ao complemento ortogonal do subespaço de direções de exploração anteriores de baixo desempenho. Além disso, para ajudar a superar os mínimos locais, propomos um componente de explotação ciente de sessão que aproveita de forma adaptativa o melhor modelo atual durante as atualizações do modelo. Nossa criteriosa avaliação usando sessões de escuta simuladas na plataforma Last.fm demonstra melhorias substanciais em relação às abordagens estado da arte no desempenho em estágio inicial e convergência geral de longo prazo. |