Structure learning and parameter estimation of probabilistic context neighborhoods

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Débora de Freitas Magalhães
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ICX - DEPARTAMENTO DE ESTATÍSTICA
Programa de Pós-Graduação em Estatística
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/39153
Resumo: As árvores probabilísticas de contexto oferecem uma representação mais eficiente para a dependência de uma Cadeia de Markov, tanto do ponto de vista computacional como em sua fácil interpretação. Essas vantagens permitiram que esses modelos fossem amplamente utilizados e suas propriedades, estudadas. A presente dissertação busca estudar a extensão desse modelo para reticulados em Z 2 introduzida por Piroutek (2013) e denominada modelo de contexto de vizinhança probabilística, ou em inglês, probabilistic context neighborhood (PCN). O modelo PCN propõe uma representação em forma de árvore para a dependência espacial de um campo aleatório de Markov bidimimensional, permitindo que cada site dependa de uma vizinhança de tamanho variável, denominada contexto. Essa variação de campos aleatórios de Markov permite uma redução significativa dos parâmetros livres a serem estimados. No PCN, a estrutura de vizinhança é fixada em frames, diferentemente do trabalho feito em Csiszár e Talata (2006a), o que permite o cálculo da cardinalidade dos diferentes contextos de uma árvore e a proposta de um algoritmo que seleciona o melhor modelo baseado no critério PIC (pseudo­Bayesian information criterion). Nosso trabalho procura também validar o algoritmo PCN através de um estudo de simulações, além de exemplificar a aplicação do modelo para dados reais. Os resultados confirmam a adequação do algoritmo e sugerem que a cota do tamanho máximo da árvore permitida pode ser melhorada. Além disso, os resultados empíricos fornecem estimativas para as probabilidades de transição do processo