A General framework for parameter learning with regularization

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Uriel Moreira Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ICX - DEPARTAMENTO DE ESTATÍSTICA
Programa de Pós-Graduação em Estatística
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/42685
https://orcid.org/0000-0001-7640-2530
Resumo: Nessa tese é introduzido um novo paradigma de aprendizagem de parâmetros sequencial em modelos de Markov ocultos, capaz de acomodar vários outros algoritmos encontrados na literatura como casos particulares. Essa generalidade é possível principalmente devido à um formalismo alternativo para regularização nesses modelos. Para ilustrar a flexibilidade do novo paradigma, foram desenvolvidos três novos algoritmos, incluindo uma versão melhorada e completamente adaptada do clássico filtro de Liu e West. Considerando também esquemas de reamostragem mais eficientes, é ilustrado que em alguns casos o desempenho inadequado de alguns algoritmos de aprendizagem de parâmetros sequencial previamente observado na literatura pode em sua maioria ser atribuído à degeneração de caminhos inerente à esses métodos, degeneração essa que a metodologia proposta ativamente busca mitigar. Destaca-se também que é fornecida evidência de que os algoritmos para aprendizagem de parâmetros discutidos aqui podem fornecer estimativas compatíveis com algoritmos computacionalmente intensivos e que compõem o estado da arte dessa literatura, como Monte Carlo via cadeias de Markov baseados em métodos de partículas.