Folheações holomorfas tangentes a subconjuntos Levi-flat
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Minas Gerais
UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/EABA-A9FJ24 |
Resumo: | This thesis is devoted to the study of holomorphic foliations of dimension n, in local and global projective cases, which are tangent to Levi-at subsets. In this work, we will extend some aspects of the theory of Levi-at hypersurfaces invariant by holomorphic foliations to the context of Levi-at subsets. We study, in particular, in local and global cases, situations in which a foliation tangent to a Levi-at subset H has meromorphic or rational rst integral in the intrinsic complexicationH{. Finally, we study the integrability of special types of projective foliations tangent to Levi-at hypersurfaces, more specically foliations induced by closed 1-forms or with liouvillian rst integral or that are generic element of a linear pencil. |