General unsupervised semantic segmentation pipeline

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: João Pedro Klock Ferreira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICA
Programa de Pós-Graduação em Engenharia Elétrica
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/58334
Resumo: Neste trabalho apresentamos um pipeline de segmentação semântica não supervisionada baseado em Redes Neurais Convolucionais (CNNs), com foco em imagens de sensoriamento remoto. Nosso pipeline aprimora os artigos que representam o atual estado-da-arte na literatura, resultando em uma metodologia versátil que pode receber entradas supervisionadas, não supervisionadas e fracamente supervisionadas. Também propomos uma metodologia de geração automática de scribbles que é capaz de rotular semi-automaticamente grandes conjuntos de dados com supervisão mínima. Para acompanhar esta metodologia também propomos um classificador de scribbles e uma ferramenta de rotulagem de scribbles. E, finalmente, propomos duas aplicações do mundo real onde testamos as capacidades de nossa rede proposta. Os resultados em datasets de benchmarking mostram que nossa rede proposta pode ser competitiva com o estado da arte atual para métodos baseados em CNN, o gerador de scribble é capaz de fornecer scribbles significativos e relevantes para grandes conjuntos de dados, e nossas aplicações mostram uma variedade de possibilidades de uso para nossos rede.