[en] A DISTRIBUTED REGION GROWING IMAGE SEGMENTATION BASED ON MAPREDUCE

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: PATRICK NIGRI HAPP
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34941&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34941&idi=2
http://doi.org/10.17771/PUCRio.acad.34941
Resumo: [pt] A Segmentação de imagens representa uma etapa fundamental na análise de imagens e geralmente envolve um alto custo computacional, especialmente ao lidar com grandes volumes de dados. Devido ao significativo aumento nas resoluções espaciais, espectrais e temporais das imagens de sensoriamento remoto nos últimos anos, as soluções sequenciais e paralelas atualmente empregadas não conseguem alcançar os níveis de desempenho e escalabilidade esperados. Este trabalho propõe um método de segmentação de imagens distribuída capaz de lidar, de forma escalável e eficiente, com imagens grandes de altíssima resolução. A solução proposta é baseada no modelo MapReduce, que oferece uma estrutura altamente escalável e confiável para armazenar e processar dados muito grandes em ambientes de computação em clusters e, em particular, também para nuvens privadas e comerciais. O método proposto é extensível a qualquer algoritmo de crescimento de regiões podendo também ser adaptado para outros modelos. A solução foi implementada e validada usando a plataforma Hadoop. Os resultados experimentais comprovam a viabilidade de realizar a segmentação distribuída sobre o modelo MapReduce por intermédio da computação na nuvem.