Semantic segmentation with siamese autoencoder and latent data model via context windows
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Minas Gerais
Brasil ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO Programa de Pós-Graduação em Ciência da Computação UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/47523 |
Resumo: | Sensoriamento remoto é o conjunto de técnicas e procedimentos tecnológicos que visa à representação da superfície terrestre sem a necessidade de um contato direto e envolve ações para levantar dados, informações e imagens da superfície, com o intuito de representá-las e melhor entender os seus aspectos. Com o avanço tecnológico e consequente aumento de dados obtidos para análise, juntamento com o aprimoramento de técnicas de redes neurais artificais cada vez mais poderosas, diversas tarefas de visão computacional - como segmentação semântica - têm atraído cada vez mais atenção de pesquisadores. Segmentar uma imagem aérea de alta dimensão, apesar de não ser uma tarefa fácil, tem apresentado resultados promissores com o uso de redes neurais. Diversas variações de arquiteturas e módulos de auxílio - como módulos de atenção - para classificação de pixels foram testados na literatura para segmentação de imagens. No entanto, a segmentação de imagens aéreas ainda apresenta espaço para melhora e algumas frentes de trabalho pouco exploradas. Nesse trabalho, utilizamos o aprendizado métrico profundo para a segmentação de imagens aéreas em quatro cenários: prédios (construções), plantações de café, carros e árvores. Utilizamos uma arquitetura, chamada SMELL, originalmente desenvolvida para tarefas de classificação e a adaptamos para solucionar problemas de segmentação semântica utilizando janelas de contexto. A aplicação de uma rede neural siamesa, com um módulo de aprendizado métrico para o qual a função de distância é aprendida e optimizada pelo próprio modelo parece não ter sido explorada na literatura para sensoriamento remoto. Nossos testes mostram que a utilização de distâncias para a classificação a nível de pixel pode ser muito útil para tarefas de segmentação, superando algumas arquiteturas que figuram o estado da arte, como ResNet e Xception. Nosso trabalho abre espaço para a exploração de outras técnicas de aprendizado métrico, bem como apresenta possíveis melhorias a serem testadas no método apresentado. |