On the cost-effectiveness of stacking of neural and non-neural methods for text classification: scenarios and performance prediction

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Christian Reis Fagundes Gomes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
Programa de Pós-Graduação em Ciência da Computação
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/45067
Resumo: Algoritmos de redes neurais, como aqueles baseados em transformers e modelos de atenção, têm se destacado em tarefas de Classificação Automática de Texto (ATC). No entanto, essa melhora de desempenho tem altos custos computacionais. Conjuntos de classificadores mais simples (ou seja, Stacking) que exploram complementaridades dos algoritmos e representações textuais também mostraram produzir desempenho de alto nível em ATC, desfrutando de alta eficácia e custos computacionais potencialmente mais baixos. Nesse contexto, apresentamos o primeiro e maior estudo comparativo para explorar a relação custo-benefício do stacking de classificadores ATC, composto por transformers e algoritmos que não utilizam redes neurais. Em particular, estamos interessados em responder a perguntas de pesquisa tais como: (1) É possível obter uma combinação de classificadores eficaz com custo computacional significativamente menor do que o melhor modelo de aprendizado para um determinado conjunto de dados? (2) Desconsiderando o custo computacional, existe uma combinação de classificadores que pode melhorar a eficácia do melhor modelo de aprendizagem? Além de responder a tais questões, outra contribuição principal dessa dissertação é a proposta de um método baseado em oráculos de baixo custo que pode prever o melhor ensemble em cada cenário (com e sem limitações de custo computacional) usando apenas uma fração dos dados de treinamento disponíveis.