Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
LUZ, Thiago Sales Freire
 |
Orientador(a): |
RIBEIRO, Enio Roberto
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Itajubá
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação: Mestrado - Ciência e Tecnologia da Computação
|
Departamento: |
IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.unifei.edu.br/jspui/handle/123456789/3927
|
Resumo: |
Exoplanetas são planetas encontrados fora do sistema solar. A descoberta dos exoplanetas ocorre devido ao trabalho científico envolvendo o uso de telescópios, entre eles, o Kepler. Os dados coletados por este telescópio são chamados de Kepler Object of Interest. Para a tarefa de identificação de padrões nestes dados são utilizados algoritmos de Aprendizado de Máquina. Estes algoritmos são treinados para classificar estes dados em exoplanetas ou em falso-exoplaneta, isto é, falso-positivo. Dentre os algoritmos de classificação têm-se os denominados algoritmos Ensemble. Estes algoritmos combinam o desempenho de predição de dois ou mais algoritmos visando aperfeiçoar o desempenho preditivo final. Na literatura são utilizados algoritmos tradicionais em pesquisas relacionadas a detecção de exoplanetas. Constata-se, dessa forma, a carência de trabalhos que utilizam algoritmos Ensemble com este propósito. Esta dissertação realiza uma comparação de desempenho entre algoritmos Ensemble no processo de identificação de exoplanetas. Cada algoritmo é implementado com um conjunto de diferentes valores de parâmetros e executado várias vezes por um processo de validação cruzada. Uma matriz de confusão é gerada em cada execução, a qual é usada para análise das seguintes métricas de desempenho do algoritmo: exatidão, sensibilidade, especificidade, precisão e nota F1. Os algoritmos Ensemble atingiram um desempenho maior que 80% de acerto na maioria das métricas. Com a alteração dos valores dos parâmetros das funções observa-se um melhor resultado na predição. O algoritmo com o melhor desempenho foi o Stacking. Em síntese, verifica que os algoritmos Ensemble possuem um grande potencial para melhorar o resultado da predição de exoplanetas. O algoritmo Stacking se mostrou superior aos demais algoritmos e este aspecto é discutido no artigo. Os resultados desta dissertação indicam ser relevante aumentar o uso destes algoritmos, por possuírem um alto desempenho preditivo, favorecendo a detecção de exoplanetas. |