Aggregating Partial Least Squares Models for Open-set Face Identification
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Minas Gerais
UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/ESBF-B2HKK6 |
Resumo: | Face identification is an important task in computer vision and has a myriad of applications, such as in surveillance, computer forensics and human-computer interaction. In the past few years, several methods have been proposed to solve face identification task in closed-set scenarios. Most of them make assumption of the complete knowledge of the world. However, in real-world applications, one might want to determine the identity of an unknown face, that is, a face whose identity does not match any known individual, comprising the open-set scenario. In this work, we propose a novel method to perform open-set face identification by aggregating Partial Least Squares models in a simple but fast way. Evaluation is performed in four datasets: FRGCv1, FG-NET, Pubfig and Pubfig83. Results show significant improvement when compared to state-of-the art approaches regardless challenges posed by different datasets. |