Face recognition based on a collection of binary classifiers

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Rafael Henrique Vareto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
Programa de Pós-Graduação em Ciência da Computação
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/34070
https://orcid.org/0000-0002-0431-5945
Resumo: O reconhecimento de faces é um dos problemas mais relevantes em visão computacional quando consideramos sua importância em áreas como vigilância, ciência forense e psicologia. De fato, um sistema de reconhecimento que representa o mundo real deve lidar com vários indivíduos desconhecidos e determinar se uma dada imagem está associada a um sujeito registrado em uma galeria de indivíduos conhecidos ou se dois rostos representam identidades equivalentes. Neste trabalho, não só combinamos funções de indexação, coleção de classificadores e histogramas para estimar quando imagens faciais pertencem à galeria, mas também modelamos a relação entre pares de faces para determinar se elas são da mesma pessoa. Os dois métodos propostos são avaliados em cinco datasets: FRGCv1, LFW, PubFig, PubFig83 e CNN VGGFace. Os resultados são promissores e mostram que o nosso método continua eficiente tanto na verificação e identificação de galeria aberta, independentemente da dificuldade dos datasets.