Face recognition based on a collection of binary classifiers
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Minas Gerais
Brasil ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO Programa de Pós-Graduação em Ciência da Computação UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/34070 https://orcid.org/0000-0002-0431-5945 |
Resumo: | O reconhecimento de faces é um dos problemas mais relevantes em visão computacional quando consideramos sua importância em áreas como vigilância, ciência forense e psicologia. De fato, um sistema de reconhecimento que representa o mundo real deve lidar com vários indivíduos desconhecidos e determinar se uma dada imagem está associada a um sujeito registrado em uma galeria de indivíduos conhecidos ou se dois rostos representam identidades equivalentes. Neste trabalho, não só combinamos funções de indexação, coleção de classificadores e histogramas para estimar quando imagens faciais pertencem à galeria, mas também modelamos a relação entre pares de faces para determinar se elas são da mesma pessoa. Os dois métodos propostos são avaliados em cinco datasets: FRGCv1, LFW, PubFig, PubFig83 e CNN VGGFace. Os resultados são promissores e mostram que o nosso método continua eficiente tanto na verificação e identificação de galeria aberta, independentemente da dificuldade dos datasets. |