Ferramenta de Auxílio na Formação de Estratégias de Oferta em Leilões de Longo Prazo de Energia Elétrica

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Santos, Sergio Augusto Trovão lattes
Orientador(a): SAAVEDRA MENDEZ, Osvaldo Ronald lattes
Banca de defesa: Casas, Vicente Leonardo Paucar lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Departamento: Engenharia
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tedebc.ufma.br:8080/jspui/handle/tede/489
Resumo: This work provides a framework to obtain the optimal bidding strategy for a GENCO in long-term electricity auction. The tool is based on intelligent techniques for optimizing the proposed Utility Function. The goal is to find the optimal strategy that maximizes the expected payoff of GENCO and simultaneously minimize the risks. The risks are modeled by two classical metrics: the Variance (Portfolio Theory) and Value at Risk (VaR). The proposed methodology is applied to auctions for long-term forward contracts, such that used in the Brazilian power system for buying and selling energy in the regulated market. The Bidding Strategy is formed through a Supply Curve which relates the optimal amount of energy to different offer prices. Thus, it allows the GENCO define the best bid (offer) for a given offer price. The proposed approach is validated for three test cases: First, concerning the variation of generation and price of energy scenarios for evaluation of the bidding strategy and the GENCOS risk perception; The second, consider a cascade hydro-term system for evaluation of MRE; and The third, considers the northeastern Brazilian subsystem where the supply curve is formed for the CHESF company's power plants portfolio. The results show how the offer may be changed according the variation of the spot prices and physical generation and demonstrate the efficacy of meta-heuristics proposed to optimize the supply model.