Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Carvalho Filho, Antonio Oseas de
 |
Orientador(a): |
SILVA, Aristófanes Corrêa |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Maranhão
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
|
Departamento: |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tedebc.ufma.br:8080/jspui/handle/tede/1692
|
Resumo: |
Lung cancer has been identi ed as the leading cause of death among cancer patients worldwide. The high rates of deaths and instances of records of this type of cancer worldwide demonstrate the importance of the development and research in order to produce resources for the detection and early diagnosis of this disease. Because of the exhaustive analysis process, alternatives such as computational tools that use image processing techniques and pattern recognition have been widely explored. Therefore, to assist the expert in the identi cation and diagnosis of nodules, systems are developed Computer-Aided Detection (CAD) and Computer-Aided Diagnostic (CADx). This thesis proposes the development of methods that reduce false positives, and the diagnosis of volumes of interest in computed tomography. The proposed methods are based on image processing techniques and pattern recognition. For this, biology concepts have been adapted and applied to the study of the branch of the diversity of species; such concepts are the phylogenetic diversity indexes used in this thesis as texture descriptors. In another aspect, techniques that measure the properties of the shape of radiological ndings have been developed and adapted. Subsequently, an evolutionary methodology is used for the selection of the best models for training. Finally, a support vector machine is applied to perform the classi cation. Promising results were found in the 833 tests that we performed; these tests were divided into 80% for training and 20% for testing. In general, for the best results, we have false positive reduction methods, an accuracy of 99.57%, sensitivity of 99.45%, speci city of 99.61%, and an ROC curve of 0.992. The results obtained for the classi cation of the degree of malignancy and benignity are: accuracy of 93.46%, sensitivity of 92.95%, speci city of 93.49%, and an ROC curve of 0.931. |