Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
SANTOS, Carla Regina da Silva
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
ARAÚJO, Marcos Antônio Ferreira de
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
CARVALHO, Renata De Farias Limeira
,
BEZERRA, Flank David Morais
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Maranhão
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA/CCET
|
Departamento: |
DEPARTAMENTO DE MATEMÁTICA/CCET
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://tedebc.ufma.br/jspui/handle/tede/2233
|
Resumo: |
The Mathematical control theory is an area of applied mathematics that deals with the analysis of Partial Differential Equations (EDPs) or Ordinary Differential Equations (ODE) control systems. This theory had a great development with the works of Russel, J. Lions, O.Yu. Imanuvilov, A. V. Fursikov, E. Zuazua, among others. In this work we will study the null and approximate controllability of a parabolic equation: the nonlinear heat equation. Our proof is based on the fact that non-linearity is globally Lipschitz. Thus, we will demonstrate the existence of a control u in a space with weight that, when acting in the domain, leads the system to the state of equilibrium. We show that null controllability can be obtained through Carleman’s inequality, inequality of observability and using the arguments of the fixed-point theorem for a multi-value application. In the case of approximate controllability, using Carleman’s inequality, we show that the set of admissible states RL(T) is dense in L 2 (Ω). |