Estimativas de Carleman para uma classe de problemas parabólicos degenerados e aplicações à controlabilidade multiobjetivo.

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: ARAÚJO, Bruno Sérgio Vasconcelos de.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Ciências e Tecnologia - CCT
PÓS-GRADUAÇÃO EM MATEMÁTICA
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2497
Resumo: Neste trabalho apresentamos estimativas de Carleman para uma classe de problemas parabólicos degenerados sobre um quadrado (no caso bidimensional) ou sobre um intervalo limitado (no caso unidimensional). Consideramos um operador diferencial que degenera apenas em uma parte da fronteira. Provamos resultados de existência, unicidade e estimativas de energia via teoria do semigrupo. Em seguida usamos funções peso adequadas para obter estimativas de Carleman e, como aplicações, resultados de controlabilidade multi-objetivo.