Combinando Planning Poker e aprendizado de máquina para estimar esforço de software

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Finco, Doglas Andre lattes
Orientador(a): Bastos, Laudelino Cordeiro lattes
Banca de defesa: Seca Neto, Adolfo Gustavo Serra lattes, Salton, Giancarlo Dondoni lattes, Bastos, Laudelino Cordeiro lattes, Emer, Maria Claudia Figueiredo Pereira lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação Aplicada
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/27930
Resumo: Estimar esforço de software é crítico às organizações, pois subestimativa ou superestimativa podem resultar em falhas nos projetos. O Planning Poker é uma das práticas mais utilizadas para definir estimativas de esforço. A estimativa ocorre com base na experiência dos integrantes, mediante reunião envolvendo todos os membros da equipe. Porém, as informações geradas neste debate não são guardadas devido à informalidade da prática e como esse conhecimento se perde, não há como aproveitá-lo em estimativas futuras. A aplicação de técnicas de aprendizado de máquina (AM) nas estimativas de esforço cresceu nos últimos anos, usadas complementarmente ou alternativamente a outras abordagens. Estudos apontam que a utilização de práticas combinadas proporciona maior assertividade em relação a técnicas individuais. Assim sendo, este estudo objetivou descrever a combinação do Planning Poker com AM, abordagem criada e nomeada ML Planning Poker, e avaliar se a proposta interfere no processo de estimativas de esforço. Realizamos pesquisa bibliográfica, um mapeamento sistemático e uma survey fortalecendo as bases do estudo. Fundamentados nas descobertas, descrevemos as etapas da ML Planning Poker e desenvolvemos uma ferramenta servindo de meio interativo com as equipes no processo de estimativas, tal que embutido a ela criamos um modelo de AM. Na sequência, documentamos a proposta e, avaliamos com estudantes de graduação e profissionais de TI. A avaliação com estudantes resultou em assertividade idêntica nas tarefas estimadas usando o Planning Poker original e a proposta. Porém, no que se refere as tarefas com estimativa incorreta, percebemos que a ML Planning Poker teve melhor resultado, já que, 57,1% das tarefas teve diferença de no máximo 1 hora entre tempo estimado e realizado em comparação a 39,2% do Planning Poker original. Além disso, dos estudantes participantes, 81,2% concordam que a proposta contribui com o processo de estimativas. Os profissionais de TI perceberam benefícios da proposta e defendem que o AM proporciona um subsídio aos integrantes. Reforçaram também o problema do esquecimento de tarefas muito antigas dificultando a estimativa atual, sendo que a ML Planning Poker auxilia, pois traz tarefas semelhantes anteriores. Mesmo que existam questões a serem melhoradas, como a acurácia do modelo e a usabilidade da ferramenta, percepções direcionam para benefícios da ML Planning Poker nas tarefas realizadas há muito tempo ou que os membros não possuem experiência, trazendo maior segurança ao participante na definição de sua estimativa. A ML Planning Poker apresenta potencial pois o fator humano do Planning Poker continua sendo considerado enquanto o AM apoia a tomada de decisão, permitindo melhorar o processo de estimativas.