Classificação de câncer de ovário através de padrão proteômico e análise de componentes independentes

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Neves, Simone Cristina Ferreira lattes
Orientador(a): BARROS FILHO, Allan Kardec Duailibe lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Departamento: Engenharia
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tedebc.ufma.br:8080/jspui/handle/tede/490
Resumo: The ovarian cancer is difficult to diagnose in the early stages of development. In this work we bring a study of a new method that gave us great accuracy rates based on a bioinformatics tool called surface enhanced for laser desorption and ionization (SELDI-TOF) used to generate proteomic patterns which is one of the technologies advanced in the diagnosis. Our goal is to contribute to effectiveness of this tool, which already helps diagnosis earlier, our methodology uses independent component analysis (ICA) for feature extraction and neural networks to classify between malignancy and no malignancy in a database of the research center cancer in the U.S.A. Our work rates obtained acurracy 97%, 98% specificity and 96% sensitivity.