Classificação de Lesões em Mamografias Digitais Utilizando Análise de Componentes Independentes e Perceptron Multicamadas

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Campos, Lucio Flavio de Albuquerque lattes
Orientador(a): BARROS FILHO, Allan Kardec Duailibe lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Departamento: Engenharia
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tedebc.ufma.br:8080/jspui/handle/tede/344
Resumo: We propose a method for discrimination and classification of mammograms with benign, malignant and normal tissues using independent component analysis and neural networks. The method was tested for a mammogram set from MIAS database, and multilayer perceptron. The method obtained a success rate of 97.83% , with 97.5% of specificity and 98% of sensitivity.