Metodologia baseada em aprendizado profundo para agrupamento de séries temporais univariadas

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: ARAÚJO, Alexandre de Carvalho lattes
Orientador(a): PAIVA, Anselmo Cardoso de lattes
Banca de defesa: PAIVA, Anselmo Cardoso de lattes, SOUSA, João Dallyson Sousa de Almeida de lattes, GOMES JÚNIOR, Daniel Lima lattes, SERRA, Ginalber Luiz de Oliveira lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
Departamento: DEPARTAMENTO DE INFORMÁTICA/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tedebc.ufma.br/jspui/handle/tede/3354
Resumo: Electrical energy companies have a need to plan energy distribution to fulfill the needs of it’s costumers. They also need to analyze energy consumption to detect irregularities. To perform these tasks, consumption patterns discovery is an essential tool. Discovery of these patterns is a clustering task. There is a great number of approachs to cluster data, but a relatively new research subject for this task is the usage of deep learning. Great effort in this area is allocated to static data. However, applications that use time series data have been growing in the last years and not as much research effort is being made in this area. In this work, we propose a new methodology based in the Deep Embedded Clustering architecture, a popular deep clustering algorithm, to cluster electric consumption time series data while also approaching one of the flaws present on DEC, the need to inform number of clusters a priori, which isn’t generally known in real problems. To evaluate our methodology, we conducted tests regarding cluster number estimation in 66 time series datasets with known cluster numbers and to evaluate the consumption pattern discovery, we use 2 real electrical consumption datasets provided by a energy consumption company. Our results show superior performance when compared to approaches found in the literature for both cluster number estimation and clustering, indicating that the proposed methodology may be a effective tool for electrical energy companies.