Análise e classificação de séries temporais não estacionárias utilizando métodos não-lineares

Detalhes bibliográficos
Ano de defesa: 2000
Autor(a) principal: Thielo, Marcelo Resende
Orientador(a): Barone, Dante Augusto Couto
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/12661
Resumo: Neste trabalho fazemos revisão de alguns dos principais métodos para análise não-linear de séries temporais originadas a partir de sistemas de baixa dimensionalidade com dinâmica predominantemente determinística, dando ênfase ao problema de classificação/clusterização nãosupervisionada destas mesmas séries. Várias medidas de dissimilaridade são utilizadas em conjunto com métodos heurísticos baseados em algoritmos estocásticos, para a organização de segmentos de séries temporais não estacionárias em grupos com características em comum, na tentativa de associar a estes alguma característica clínica previamente conhecida. O método é implementado com diferentes medidas de dissimilaridade e um experimento feito com séries temporais sintéticas (obtidas a partir de simulação numérica) com fins de validação e posteriormente aplicado a um problema real, o problema de segmentação de estágios de sono. Os resultados indicam certa promissoriedade do método para aplicação na classificação estágios de sono em eletroencefalogramas.