Agrupamento de séries temporais em fluxos contínuos de dados

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Pereira, Cássio Martini Martins
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-13012014-160232/
Resumo: Recentemente, a área de mineração de fluxos contínuos de dados ganhou importância, a qual visa extrair informação útil a partir de conjuntos massivos e contínuos de dados que evoluem com o tempo. Uma das técnicas que mais se destaca nessa área e a de agrupamento de dados, a qual busca estruturar grandes volumes de dados em hierarquias ou partições, tais que objetos mais similares estejam em um mesmo grupo. Diversos algoritmos foram propostos nesse contexto, porém a maioria concentrou-se no agrupamento de fluxos compostos por pontos em um espaço multidimensional. Poucos trabalhos voltaram-se para o agrupamento de séries temporais, as quais se caracterizam por serem coleções de observações coletadas sequencialmente no tempo. Técnicas atuais para agrupamento de séries temporais em fluxos contínuos apresentam uma limitação na escolha da medida de similaridade, a qual na maioria dos casos e baseada em uma simples correlação, como a de Pearson. Este trabalho mostra que até para modelos clássicos de séries temporais, como os de Box e Jenkins, a correlação de Pearson não é capaz de detectar similaridade, apesar das séries serem provenientes de um mesmo modelo matemático e com mesma parametrização. Essa limitação nas técnicas atuais motivou este trabalho a considerar os modelos geradores de séries temporais, ou seja, as equações que regem sua geração, por meio de diversas medidas descritivas, tais como a Autoinformação Mútua, o Expoente de Hurst e várias outras. A hipótese considerada e que, por meio do uso de medidas descritivas, pode-se obter uma melhor caracterização do modelo gerador de séries temporais e, consequentemente, um agrupamento de maior qualidade. Nesse sentido, foi realizada uma avaliação de diversas medidas descritivas, as quais foram usadas como entrada para um novo algoritmo de agrupamento baseado em árvores, denominado TS-Stream. Experimentos com bases sintéticas compostas por diversos modelos de séries temporais foram realizados, mostrando a superioridade de TS-Stream sobre ODAC, a técnica mais popular para esta tarefa encontrada na literatura. Experimentos com séries reais provenientes de preços de ações da NYSE e NASDAQ mostraram que o uso de TS-Stream na escolha de ações, por meio da criação de uma carteira de investimentos diversificada, pode aumentar os retornos das aplicações em várias ordens de grandeza, se comparado a estratégias baseadas somente no indicador econômico Moving Average Convergence Divergence