Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Teixeira, Raphael Francisco Firmiano
 |
Orientador(a): |
Hippert, Henrique Steinherz
 |
Banca de defesa: |
Chaoubah, Alfredo
,
Manfrini, Francisco Augusto de Lima
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Modelagem Computacional
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/6069
|
Resumo: |
Frequentemente os valores dos parâmetros exigidos em um Contrato de Fornecimento de Energia Elétrica para consumidores não industriais são estimados com base na previsão de demanda utilizando o método “Naive”, por vezes, com algum ajuste empírico, o que pode gerar um contrato não-ótimo para o consumidor. Exemplo desse tipo de consumidor são as universidades, principalmente as públicas, por possuírem dimensões físicas consideráveis. Em consumidores com esse tipo de comportamento, a elaboração de um perfil de demanda baseado em estudo do funcionamento das instalações torna-se algo muito complicado. Tendo em vista tratar-se de um consumidor pertencente ao Serviço Público, há a necessidade de Contratos definidos com critérios suficientemente claros, haja vista a pressão dos órgãos de controle. Mais ainda quando se considera o uso responsável e eficaz do dinheiro público. Portanto, métodos com base na previsão de demanda do consumidor, em função do seu histórico e capazes de uma aproximação maior com a realidade, seriam importantes para obter contratos com valores financeiros minimizados. Tendo os dados de Demandas Registradas da Universidade Federal de Juiz de Fora e dados auxiliares de Temperaturas e Calendário de Aulas, desenvolvemos um método que testa previsões realizadas por métodos lineares (Médias Móveis, ARIMA e Holt-Winters), com previsões realizadas por métodos não- lineares (Redes Neurais). Comparamos estas previsões, e a melhor foi levada a um processo de otimização utilizando Algoritmos Genéticos. Essa otimização revelou dados ótimos para o Contrato e os respectivos custos. A previsão com melhor desempenho foi a obtida utilizando-se Redes Neurais, sem os dados auxiliares. A otimização levou a escolha da Tarifa Azul, com previsão de ganhos econômicos para a UFJF. |