Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Sullca, Alberth John Nuñez
 |
Orientador(a): |
Rabelo, Lonardo
 |
Banca de defesa: |
Ferreira, Lucas Conque Seco
,
Casagrande, Rogerio
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Mestrado Acadêmico em Matemática
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/4076
|
Resumo: |
Apresentamos neste trabalho uma decomposição celular CW das variedades Grassmannianas via teoria de Morse. Isto é feito de duas maneiras distintas por meio de representações matriciais das Grassmannianas chamadas modelo projeção e modelo reflexão. Definimos funções de Morse, a saber, uma função do tipo altura e uma função do tipo “distância ao quadrado”, respectivamente, para cada um dos modelos projeção e reflexão. Estudamos os seus pontos críticos e os índices dos mesmos, obtendo assim duas formas para calcular a decomposição celular CW. Em particular, no modelo projeção, isto é feito exibindo-se as curvas integrais associadas ao campo gradiente da função altura. |