Modelagem da pressão de fundo de poço em sistemas de escoamento multifásico: uma abordagem utilizando modelos de redes neurais polinomiais

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Oliveira, Vagner Vilela de lattes
Orientador(a): Fonseca, Leonardo Goliatt da lattes
Banca de defesa: Fonseca Neto, Raul lattes, Carvalho, Iago Augusto de lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Modelagem Computacional
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/17569
Resumo: No complexo processo de extração de petróleo e gás, há muitos indicadores importantes que devem ser acompanhados para manter a eficiência e segurança dos poços, do meio-ambiente e principalmente dos profissionais envolvidos na operação. Um desses indicadores, é a Pressão de Fundo de Poço (FBHP). Esse indicador influencia diretamente o controle de produção e a integridade dos poços, sendo um parâmetro crucial para evitar falhas operacionais e minimizar riscos. Tanto a FBHP baixa (que reduz a produção) quanto alta (que acarreta riscos diversos, entre eles o risco de explosão) devem ser foco constante de atenção. Nesse sentido, modelos computacionais têm sido desenvolvidos para prever a FBHP, fornecendo formas adicionais ou alternativas às medidas tradicionais desse indicador. Essa dissertação explora a técnica do GMDH (Group Method of Data Handling) na modelagem preditiva da FBHP. O GMDH se refere a uma família de algoritmos ainda pouco explorada, sobretudo na área de petróleo e gás. Essa pesquisa visa preencher essa lacuna, avaliando a técnica como uma alternativa possível na modelagem de FBHP. É feita uma análise comparativa entre quatro diferentes tipos de algoritmos GMDH, apontando vantagens e limitações em termos de precisão, sendo gerados modelos interpretáveis relativos aos algoritmos em sua melhor configuração de desempenho.