Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Campos, Deivid Edson Delarota
 |
Orientador(a): |
Fonseca, Leonardo Goliatt da
 |
Banca de defesa: |
Bernardino, Heder Soares
,
Igreja, Iury Higor Aguiar da
,
Pereira Junior, Wanderlei Malaquias
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Modelagem Computacional
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/16788
|
Resumo: |
A modelagem da pressão de fundo de poço em sistemas de escoamento multifásico representa um desafio complexo na indústria de petróleo e gás, dado seu impacto direto na eficiência e segurança das operações de produção. Apesar da extensa literatura existente, a aplicação de técnicas de aprendizado de máquina para este propósito permanece sub explorada. Este estudo adotou uma abordagem utilizando a Programação Genética para determinar a pressão de fundo de poço. Utilizando 795 amostras de dados relacionados a testes de produtividade de poços em campos no Oriente Médio, abrangendo variáveis como fluxo de óleo, fluxo de gás, fluxo de água, densidade do óleo, profundidade de perfuração, temperatura do fundo do poço e pressão na cabeça do poço, a estratégia baseada em Programação Genética foi aplicado para desenvolver modelos simbólicos interpretáveis. Esses modelos demonstraram habilidade em descrever, de forma compreensível, a complexa relação entre variáveis operacionais, ambientais e a pressão de fundo de poço. A obtenção de modelos simbólicos compreensíveis destaca a aplicabilidade prática da pesquisa, proporcionando uma compreensão mais profunda dos fatores que influenciam a pressão de fundo de poço e facilitando uma tomada de decisão mais informada por parte dos profissionais da indústria. |