Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Santis, Rodrigo Barbosa de
 |
Orientador(a): |
Fonseca, Leonardo Goliatt da
 |
Banca de defesa: |
Bernardino, Heder Soares
,
Fabiano, Ana Laura Cruz
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Modelagem Computacional
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/6861
|
Resumo: |
Falta de materiais é um problema comum na cadeia de suprimentos, impactando o nível de serviço e eficiência de um sistema de inventário. A identificação de materiais com grande riscos de falta antes da ocorrência do evento pode apresentar uma enorme oportunidade de melhoria no desempenho geral de uma empresa. No entanto, a complexidade deste tipo de problema é alta, devido ao desbalanceamento das classes de itens faltantes e não faltantes no inventário, que podem chegar a razões de 1 para 100. No presente trabalho, algoritmos de classificação são investigados para proposição de um modelo preditivo para preencher esta lacuna na literatura. Algumas métricas específicas como a área abaixo das curvas de Característica Operacionais do Receptor e de Precisão-Abrangência, bem como técnicas de amostragem e comitês de aprendizado são aplicados nesta tarefa. O modelo proposto foi testado em dois estudos de caso reais, nos quais verificou-se que adoção da ferramenta pode contribuir com o aumento do nível de serviço em uma cadeia de suprimentos. |