Sistemas hamiltonianos integráveis em órbitas coadjuntas de grupos de Lie clássicos

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Barros, Daniel Rotmeister Teixeira de lattes
Orientador(a): Santos, Laércio José dos lattes
Banca de defesa: Sanchez, Catarina Mendes de Jesus lattes, Correa, Eder de Moraes lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Mestrado Acadêmico em Matemática
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/16149
Resumo: Neste trabalho, serão estudados sistemas Hamiltonianos em órbitas (co)adjuntas de grupos de Lie. Em particular, estaremos interessados em analisar questões envolvendo integrabilidade, uma vez que, nesse caso, é possível encontrar soluções analíticas exatas para as equações de movimento. Consideraremos apenas funções Hamiltonianas de um tipo específico, a saber, definidas através de uma aplicação momento. Um dos objetivos consiste em investigar uma construção concreta de sistemas Hamiltonianos integráveis em órbitas (co)adjuntas por meio do formalismo de Lax. A metodologia utilizada é baseada numa aplicação do truque de Thimm. Para isso, deveremos enxergar as órbitas (co)adjuntas de grupos de Lie compactos como variedades simpléticas e determinar uma aplicação momento associada à restrição da ação (co)adjunta a essas órbitas. A condição de equivariância da aplicação momento será essencial para a construção de funções em involução para o sistema.